Trihamiltonian extensions of separable systems in the plane
نویسنده
چکیده
A method to construct trihamiltonian extensions of a separable system is presented. The procedure is tested for systems, with a natural Hamiltonian, separable in classical sense in one of the four orthogonal separable coordinate systems of the Euclidean plane, and some explicit examples are constructed. Finally a conjecture on possible generalizations to other classes of systems is discussed: in particular, the method can be easily adapted to the eleven orthogonal separable coordinate sets of the Euclidean three-space.
منابع مشابه
A Petri-net based modeling tool, for analysis and evaluation of computer systems
Petri net is one of the most popular methods in modeling and evaluation of concurrent and event-based systems. Different tools have been created to support modeling and simulation of different extensions of Petri net in different applications. Each tool supports some extensions and some features. In this work a Petri net based modeling and evaluation tool is presented that not only supports dif...
متن کاملEntropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملApplication of the linear Differential Equations on the Plane and Elements of Nonlinear Systems, In Economics
In recent years, it has become increasingly important to incorporate explicit dynamics in economic analysis. These two tools that mathematicians have developed, differential equations and optimal control theory, are probably the most basic for economists to analyze dynamic problems. In this paper I will consider the linear differential equations on the plane (phase diagram) and elements of nonl...
متن کاملOn the compactness property of extensions of first-order G"{o}del logic
We study three kinds of compactness in some variants of G"{o}del logic: compactness,entailment compactness, and approximate entailment compactness.For countable first-order underlying language we use the Henkinconstruction to prove the compactness property of extensions offirst-order g logic enriched by nullary connective or the Baaz'sprojection connective. In the case of uncountable first-orde...
متن کاملSeparable programming problems with the max-product fuzzy relation equation constraints
In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with decreasing and increasing objective functions with the same constraints. They are solved by the maximum solution and one of minimal solutions of its feasible domain, respectively. Their combination produces the original optimal solution. The ...
متن کامل